Text Representation in Multi-label
Classification: Two New Input Representations

Rodrigo Alfaro':? and Héctor Allende!-3

! Universidad Técnica Federico Santa Marfa, Chile.
2 Pontificia Universidad Catélica de Valparaiso, Chile.
3 Universidad Adolfo Ibafez, Chile.
rodrigo.alfaro@ucv.cl ; hallende@inf.utfsm.cl

Abstract. Automatic text classification is the task of assigning unseen
documents to a predefined set of classes. Text representation for classifi-
cation purposes has been traditionally approached using a vector space
model due to its simplicity and good performance. On the other hand,
multi-label automatic text classification has been typically addressed ei-
ther by transforming the problem under study to apply binary tech-
niques or by adapting binary algorithms to work with multiple labels.
In this paper we present two new representations for text documents
based on label-dependent term-weighting for multi-label classification.
We focus on modifying the input. Performance was tested with a well-
known dataset and compared to alternative techniques. Experimental
results based on Hamming loss analysis show an improvement against
alternative approaches.

Keywords: Multi-label text classification, text modelling, problem transforma-
tion.

1 Introduction

Large amounts of text document available on digital format on the web contain
useful information for a wide variety of purposes. The amount of digital text
is expected to increase significantly in the near future; thus, the need for the
development of data analysis solutions becomes urgent. Text classification (or
categorisation) is defined as the assignment of a Boolean value to each pair
(dj,ci) € D x C, where D is the domain of documents and C = {cy,...,¢¢|} is
the set of predefined labels [12].

Binary classification (BC) is the simplest and most widely studied case. In
BC, a document is classified into one of two mutually exclusive classes. BC can be
extended to solve multi-class problems. Moreover, if a document is categorised
with either one label or multiple labels at once, it is called a single-label or
multi-label problem, respectively [12].

Tsoumakas and Katakis [14] presents a formal description of multi-label
methods. In [14], L = {\;: j = 1...1}, where \; corresponds to the j-th label,
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is the finite set of labels in a multi-label learning task, and D = {f(x4;Y:);¢ =
1...m} denotes a set of multi-label training data, where x; is the feature vec-
tor and Y; C L is the set of labels of the i—th example. Methods for solving
this problem are grouped into two types, namely, problem transformation and
algorithm adaptation. The first type of methods is algorithm-independent; it
transforms the multi-label learning task into one or more single-label classifica-
tion tasks. Thus, this type of method can be implemented using efficient binary
algorithms. The most common problem transformation method (PT4) learns
|L| binary classifiers H; : X — {l,—l}, one for each different label [ in L. PT4
transforms the original data set into |L| data sets Djy—q. 7). Each D; labels
every example in D with [ if [ is contained in the example or —l, otherwise.
PT4 yields the same solution for both the single-label and multi-class problems
using a binary classifier. For the classification of a new instance x, this method
generates a set of labels as the union of the labels generated by the |L| clas-
sifiers Hpra(x) = ;e {1} + Hi(r) = I. The second type of method extends
specific learning algorithms for handling multi-label data directly. This exten-
sions are achieved by adjustments such as modifications to classical formulations
from statistics or information theory. The pre-processing of documents for better
representation can also be grouped in this type.

Multi-label classification is an important problem for real applications, as can
be observed in many domains, such as functional genomics, text categorisation,
music mining and image classification.

The purpose of this paper is to present a new representation for documents
based on label-dependent term-weighting. Lan et al. [6] propose ¢ f—r f represen-
tation for two classes of single-label classification problems. Our representation
is a generalisation of the ¢ f—rf applied to multilabel classification problems.

This paper is organised as follows. In section 2, we briefly introduce multi-
label text classification. In section 3, we analyse text representation. Our pro-
posal for two new methods of representation is illustrated in section 4. In section
5, we compare the performance of our proposal with other algorithms. The last
section is devoted to concluding remarks.

2 Multi-label text classification

The automatic classification of multi-label text has not been thoroughly ad-
dressed in the existing literature. Although many multi-label datasets are avail-
able, most of the techniques for automatic text classification consider them only
as single-label dataset. One of the first approaches developed was Boostexter,
an algorithm based on Boosting for the multi-label case [11]. This algorithm
adjust the weights of training examples and their labels in the training phase;
labels that are hard (easy) to predict correctly get incrementally higher (lower)
weights. Among the proposal presented in [14], problem transformation is the
most widely used. However, the automatic classification of multi-label text has
been addressed by algorithms that directly capture the characteristics of the
multi-label problem. Zhang and Zhou, for example, solved the multi-label prob-
lem using Backpropagation for Multilabel Learning (Bp-MLL), using artificial
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neural networks with multiple outputs. Bp-MLL is derived from Backpropaga-
tion by employing a novel error function capturing the characteristics of multil-
abel learning [16].

Regardless of the solution approaches to the Multi-label problem and the
algorithms that solve it, according to Joachims [4], any text classification task
has complexities due to the high-dimensional feature space, a heterogeneous use
of terms, and a high level of redundancy. Multi-label problems have additional
complexities, including a large number of tags per document. These characteris-
tics of a multi-label problem require different methods of evaluation than those
used in traditional single-label problems.

3 Problem representation

The performance of a reasoning system depends heavily on problem representa-
tion. The same task may be easy or difficult, depending on the way it is described
[3]. The explicit representation of relevant information enhances machine per-
formance. Also, a more complex representation may work better with simpler
algorithms.

Document representation has high impact on the task of classification [5].
Some elements used for representing documents include N-grams, single-word,
phrases, or logical terms and statements. The vector space model is one of the
most widely used models for ad-hoc information retrieval, mainly because of its
conceptual simplicity and the appeal of its underlying metaphor of using spatial
proximity for semantic proximity [9].

Space representation can be conceived has a kernel representation. Kernel
methods are an approach for solving machine learning problems. Joachims was
among the first author to use kernel-based methods to categorise text [4]. Cris-
tianini et al. utilised the kernel-based approach for representing the vector space
model and latent semantic indexing [2]. Similarly, Tsivtsivadze et al. established
a mapping of input data into a feature space by means of a kernel function and
then used learning algorithms to discover relationships in that space [13].

In the vector space model (VSM), the contents of a document are represented
by a vector in the term space d = {ws;...;wg}, where k is the size of the term
(or feature) set. Terms may be measured at several levels, such as syllables,
words, phrases, or any other semantic and/or syntactic unit used to identify the
content of a text. Different terms have different importance within a text, and
thus, the relevance indicator w; (usually between 0 and 1) represents how much
the term t; contributes to the semantics of the document d.

For weight terms in the vector space model, word frequency of occurrence in
the document can be used as term weight for term-weighting. However, there are
more effective methods for term-weighting. The basic information used to derive
term-weighting is term frequency, document frequency, or sometimes collection
frequency.

There are different mappings of text to input space across different text
classifications. Leopold and Kindermann, for example, combines mappings with
different kernel functions in support vector machines [8]. According to Lan et al.
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[7], two important decisions for choosing a representation based on VSM are the
following. First, what should constitute a term? For example, should it be a sub-
word, word, multi-word or meaning? Second, how should a term be weighted?
Term-weighting can be a binary function or term frequency-inverse document
frequency (tf—idf) developed by Salton and Buckley [10], using feature selection
metrics such as x?, information gain (IG), or gain ratio (GR). Term-weighting
methods improve the effectiveness of text classification by assigning appropri-
ate weights to terms. Although text classification has been studied for several
decades, term-weighting methods for text classification are usually borrowed
from the traditional information retrieval (IR) field, including, for example, the
Boolean model, ¢ f—idf, and its variants.

Table 1 shows the variables that we will consider in a term-weighting method
for multi-label problems.

Table 1. Variables utilized in a term-weighting in multi-label problem for a term ¢
with |L| labels

labeh At X\ dt,>\1

labely; |atx; |dix;

label\L\ Qy,|L| dt,\L\

where ay,; is the number of documents in the class A; containing the term ¢ and
dy,»; is the number of documents in the class A; that do not contain the term ¢.

3.1 Bag-of-Words representation (tf—idf)

The most widely used document representation for text classification is ¢t f—idf
[12], where for a two classes problem (where, label; is class™ and labels is class™)
each component of the vector is computed as:

tf—idfiq = ft,dloglo (%)a (1)

where f; 4 is the frequency of term ¢ in the document d, N = (a¢x, + dix, +
agx, +de x,) is the number of documents, and Ny = (ay,, + a¢,z,) is the number
of documents containing the term t.

3.2 Relevance frequency representation (tf—rf)

Lan et al. [7] proposed recently ¢ f—r f as an improved VSM representation based
on two classes and single-label problems (where, label; is classt and labels is
class™):

trha = fualogy (24 L), 2)

max (1,at7)\2
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where f; 4 is the frequency of term ¢ in the document d, a; , is the number of
documents in the positive class containing the term ¢, and ay,», is the num-
ber of documents in the negative class containing the term t. The function
max (l,an /\2) in the denominator allows that the term tf—rfiy be not indef-
inite even if a; », is zero.

According to [7], using this representation in different single-label data sets
improves the performance of two-class based classifiers. For multi-class problems,
[7] used a one-versus-all method.

Note that tf—rf representation is for single-label problems and does not
consider the frequency information of the term evaluated in other classes. That
is, it only considers the relationship of the appearance of the term in the class
under evaluation (that is, positive) versus all the other classes (that is, negative).

4 Our proposal for a new representation of multi-label
datasets

On the one hand, ¢f—idf as a representation of documents considers only the
frequency of terms in the document (¢f) and the frequency of terms in all docu-
ments (idf), disregarding the class or label to which the documents belong. On
the other hand, tf—rf also considers the frequency of terms in the document
(tf) and the frequency of terms in all documents of the class under evaluation
(rf). That is, in ¢t f —r f, each document is represented by a different vector when
assessing if it belongs to a particular class. From a theoretical point of view, this
extension of the ¢f—rf representation of text changes the representation of a
document according to the label under evaluation, thereby achieving larger dif-
ferences between documents belonging to different labels and thus harnessing
the performance of binary classifiers. Thus, important information about the
frequency in other classes is used, specially when frequency of the term shoes
sharp variations as example in Table 2 shows.

Table 2. Example of frequency of a term for each label

Label 1|Label 2|Label 3|Label 4|Label 5|Label 6|{Label 7|Label 8 Label 9
Frequency| 53 76 87 66 62 27 25 28 26

We propose the use of a centrality function u—Relevance Frequency of a
Label, tf—ur fl, over the frequency of a term for each label, is derived from the
term frequency and relevance frequency of a given label; as such, it constitutes
a new representation based on tf—rf for a multi-label problem.

a
tf—pur fliar = fialogy (2+ ﬁ) (3)
tA5 /1

where M(at,xm) is a function over the set ay,», , = {@sn sy Qe x Qe x g o QL) )

We will consider p(at,z,,) = max (1, mean(at,,,)) for tf—rfl representa-

j/1 i/t
tion and p(ayy,,,) = max (1, median(asy,,,)) for tf—rrfl representation. Such
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functions give centrality measures, the mean is a classical metric and the median
is a robust metric.

4.1 Relevance frequency of a label

Relevance frequency of a label, tf—rfl, is derived from the py—Relevance Fre-
quency of a Label, tf—urfl; as such, it constitutes a new representation for a
multi-label problem.

at,l
tf—rflia = fialog, (2 ’ '
f=rflia = ft.a 0g2( + max (1,mean(at,,\j/l))) W

In equation 5, the term mean(at,y,,,) is the average number of documents
containing the term ¢ for each document labelled other than .

4.2 Robust relevance frequency of a label

Robust relevance frequency of a label, ¢ f —rr fl, also is derived from the u—Relevance
Frequency of a Label, ¢ f—urfl; as such, this is the second new representation
for a multi-label problem.

at.l
tf=rrfliar = fi,alogy (2 + , ) (5)
max (1, median(ay,z, ,))
The use of the median should yield more robust results in datasets containing
large differences between the frequency of the occurrence of a term in a given
set of labels versus other labels sets under evaluation.

4.3 Classification method

The proposed term-weighting methods includes information on the frequency of
the occurrence of a term ¢ in each set of documents labelled other than the label
under evaluation. It is expected that mean(ay,y,,,) and median(ay,y,, ) will be
higher if the term ¢ appears more frequently in documents with label A\; = [
than in documents with other labels A;/;, and they will be lower, in contrast, if
the term ¢ is more frequent in documents with labels other than [.

Our proposal is based on the tf—rfl and tf—rrfl representations and the
SVM binary ensemble. It transforms the multi-label problem into a PT4 form
[14], and then for each document d, the tf—rfl and tf—rr fl representations are
derived for each label \; and classified using |L| binary classifiers.

5 Experiments

The evaluation of the proposed tf—rfl and tf—rrfl representations was car-
ried out using the Reuters-21578 Distribution 1.09. The Reuters-21578 data set
consists of 21,578 Reuters newswire documents that appeared in 1987, less than
half of which have human-assigned topic labels. The data set and the validation
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mechanism used are the same as in [16], that is, the subsets of the k classes with
the largest number of articles are selected for k = 3,...,9, resulting in seven
different data sets denoted as First3, First4, ..., First9. Also, in this test 3-fold
cross-validation is run ten times on each data set. Our classification method
reports the average values among ten runs. Table 3 shows the data set charac-
teristics.

Table 3. Characteristics of the pre-processed data set. Note that PMC denotes the
percentage of documents belonging to more than one class and ANL denotes the average
number of labels for each document

Data |Number of| Number of |Vocabulary| PMC | ANL
Set Classes |Documents Size
First3 3 7,258 529 0.74%|1.0074
First4 4 8,078 598 1.39%11.0140
Firstb 5 8,655 651 1.98%]|1.0207
First6 6 8,817 663 3.43%(1.0352
First7 7 9,021 677 3.62%(1.0375
First8 8 9,158 683 3.81%(1.0396
First9 9 9,190 686 4.49%|1.0480

First, we must transform the problem into a PT4 form, dividing the data
into k£ input data sets for k = 3,...,9 binary classifiers, whereby each machine
classifies one-against-others labels. Four representations were constructed from
the data set, namely, the classical tf—idf and tf—rf representations and our
proposed tf—rfl and tf—rrfl representations. An ensemble of binary SVM
classifiers was used. Each machine employed a linear kernel; the parameters were
optimised by maximising the classification margin between each pair of classes.
The ensemble was implemented with LibSVM [1], where each machine worked
with random sampling. Two-thirds of the examples were used for training, and
one-third was used for testing. Note that all ¢ f —i fd representations are the same,
regardless the label under evaluation, while the tf—rf, tf—rfl and tf—rrfl
representations are different for each label.

Multi-label classification methods require different performance metrics than
those used in traditional single-label classification methods. These measures can
be grouped into bipartitions and rankings [15]. Since our method is not based
on ranking, as in [11] and [16], the evaluation of the results in this research was
performed using Hamming loss by considering bipartitions to evaluate how many
times an instance-label pair was misclassified. This measure of error is defined
as:

d
1 1
hloss(h) = p E m|h(xi)AYi|, (6)
i=1

where h(x;) is the set of labels defined by the classifier for the documents, Y;
is the original labels of the documents and A is the difference between both.
Performance is better when hloss(h) is near 0.
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Table 4 shows the different representations and their performance in term
of Hamming loss. In this metric, for data set with fewer classes, Boostexter is
better than tf—rfl and tf—rrfl for 0.00356 and 0.00218 respectively. For data
set with more classes (namely, First5, First6, First7, First8 and First9), tf—rfl
is better than the other algorithms. Table 4 also shows that tf—rrfl is better
than the other algorithms for data sets with more classes (namely, the First4,
First5, First6, First7, First8 and First9).

Table 4. Experimental results of SVM Ensembles with tf—idf, tf—rf, tf—rfl and
tf—rrfl compared with others learning algorithms in terms of Hamming loss. Bp-MLL*
and BoosTexter* as reported by [16]

Data set | First3 | First4 | Firsts | First6 | First7 | First8 | First9 |Average

SVM tf-idf
SVM tf-rf
SVM tf-rfl
SVM tf.rrfl
Bp-MLL*
BoosTexter*

0.02797
0.02814
0.02716
0.02578
0.0368
0.0236

0.02641
0.02687
0.02590
0.02478
0.0256
0.0250

0.02590
0.02611
0.02526
0.02427
0.0257
0.0260

0.02477
0.02522
0.02412
0.02321
0.0271
0.0262

0.02246
0.02287
0.02186
0.02110
0.0252
0.0249

0.02083
0.02118
0.02026
0.01958
0.0230
0.0229

0.01981
0.02012
0.01930
0.01870
0.0231
0.0226

0.02402
0.02436
0.02341
0.02249
0.02664
0.02446

To evaluate the results, as in [16] a test based on the two-tailed paired ¢-test
at the 5 percent significance level was implemented. According to these results,
SVM Ens tf—rfl performs better than SVM Ens tf—idf (4.2595 x 10~°), SVM
Ens tf—rf (2.0376 x 10~7) and Bp-MLL (3.74 x 10~2). In addition, SVM Ens
tf—rrfl performs better than SVM Ens t f —idf (2.5368 x107°), SVM Ens tf—rf
(4.2013 x 107%) and Bp-MLL (1.63 x 1072). The p-value shown in parentheses
provides a further quantification of the significance level. The results shown
in Table 5 show the level of statistic significance as compared to alternative
approaches with respect to Hamming loss. We can see that diferences between
Boostexter have not statistical significance for data sets with fewer labels (First3,
First4, First5), but for data sets with more labels (First6, First7, First8 and
First9), Boostexter has the worst performance among all algorithms.

Table 5. Statistical analysis of results in terms of p-value on t-student test. NSS mean
”Is Not Statistically Significant”

SVM tirfl | SVM tfrf | SVM tf-idf | Bp-MLL [BoosT.
SVM tf.rrfl{1.0754 x 10~%[4.2013 x 10~ °%[2.5368 x 10~°[1.63 x 10~ 2| NSS
SVM tf-rfl - 2.0376 x 1077]4.2013 x 107°%|3.74 x 1072| NSS
SVM tf-rf - 4.2595 x 107 NSS NSS
SVM tf-idf - NSS NSS
Bp-MLL - NSS

Finally, in Figure 1, we show how the different weighting methods discrim-
inate when a term is important for a classifier or not. In this case, using rrfI
and 7fl the term is weighted to high for labels 1, 2, 3, 4 and 5, and lower for
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labels 6, 7, 8 and 9. Note that idf does not discriminate when evaluating each
label and rf slightly discriminates.

2,2 o
b P

1,6

‘—O—rrﬂ fl —&— f —8— idf

14

1.2

Label

Fig. 1. Term-weights assigned by different representations for each label

6 Remarks and conclusions

Multi-label classification is an important topic in information retrieval and ma-
chine learning. Text representation and classification have been traditionally
addressed using tf—idf due to its simplicity and good performance. Changes
in input representation can employ knowledge about the problem, a particular
label, or the class to which the document belongs. Other representations can be
developed for overcoming a particular problem directly, without transformation.
New benchmarks should be used to validate the results; however, the prepro-
cessing of multi-labelled texts must be standardised.

In this paper, we have presented the ¢ f—pur fl as a novel text representations
for the multi-label classification approach. This proposal was assessed with two
new input representation tf—rfl and tf—rrfl. This representation considers
the label to which the document belongs. Combining, this problem transfor-
mation with algorithm adaptation. The performance of this representation was
tested in combination with an SVM ensemble using a known dataset. The results
show statistically significant improvement as compared to alternative approaches
with respect to Hamming loss. We believe that the contribution of the proposed
multi-label representation is due to a better understanding of the problem un-
der consideration. In future studies, we plan to compare our method to other
t f—idf representations and to investigate other label-dependent representations
and procedures in order to reduce the dimension of the feature space depending
on the relevance of each label.
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